The Studies of Geometrical Microstructure of Tetragonal Co²⁺-V_O Centers in KNbO₃ and KTaO₃ Crystals from EPR Data

Wen-Chen Zheng^{a,b} and Shao-Yi Wu^{a,b}

 ^a Department of Material Science, Sichuan University, Chengdu 610064, P. R. China
^b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China

Reprint requests to W.-C. Z.; E-mail: zhengwenchen@netease.com

Z. Naturforsch. 57 a, 925–928 (2002); received July 7, 2002

From the perturbation formulas for the EPR g factors g_{\parallel} and g_{\perp} of a $3d^7$ ion in tetragonal octahedral crystal field based on a cluster approach, the geometrical microstructures of tetragonal $\mathrm{Co^{2^+}}\text{-}\mathrm{V_O}$ centers in KNbO₃ and KTaO₃ crystals are obtained by fitting the calculated g_{\parallel} and g_{\perp} to the observed values. It is found that the $\mathrm{Co^{2^+}}$ ion in $\mathrm{Co^{2^+}}\text{-}\mathrm{V_O}$ centers is displaced away from the oxygen vacancy $\mathrm{V_O}$ by 0.3 Å in KNbO₃ and by 0.29 Å in KTaO₃. These results are comparable with those of $\mathrm{Fe^{3^+}\text{-}V_O}$ centers in ABO₃ perovskite-type crystals obtained from both the shell-model simulations and the embedded-cluster calculations, and from theoretical studies of EPR data. The experimental values of g_{\parallel} and g_{\perp} for the tetragonal $\mathrm{Co^{2^+}\text{-}V_O}$ centers in both crystals are also explained reasonably.

Key words: Electron Paramagnetic Resonance (EPR); Crystal- and Ligand-Field Theory; Defect Structure; Co²⁺; KNbO₃; KTaO₃.